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My interest in this note is to give some examples of eigenvalues of a matrix:

Example 1: Let us chooseA to be the matrix

A =




2 4 5
3 6 7
−1 4 −3




The characteristic polynomial ofA is obtained by computing

det(λI −A) = λ3 − 5λ2 − 47λ− 6

The roots of the above polynomial are at9.8389, −4.7094 and−0.1295 which are the three eigenvalues of the
matrix A. Note that all three eigenvalues are real.

Example 2: Let us chooseA to be the matrix

A =




5 0 1
8 3 6
0 −6 3




The characteristic polynomial ofA is obtained by computing

det(λI −A) = λ3 − 11λ2 + 75λ− 177

The roots of the above polynomial are at3.6581 + 5.8879i, 3.6581 − 5.8879i and 3.6838 which are the three
eigenvalues of the matrixA. Note that all the eigenvalues are not real, but the eigenvalues occur in complex
conjugate pairs.

Let us now look at a sufficiently complicated example:

Example 3: Let us chooseA to be the matrix

A =




5 0 1 1 0 0
8 8 6 0 1 0
0 −6 8 0 0 1
1 0 0 5 0 1
0 0 0 8 3 6
0 −1 0 3 −6 3




The characteristic polynomial ofA is obtained by computing

det(λI −A) = λ6 − 32λ5 + 482λ4 − 4078λ3 + 21054λ2 − 60643λ + 7

The roots of the above polynomial are at8.4927+ 6.3631i, 8.4927− 6.3631i, 3.6075+ 5.5606i, 3.6075− 5.5606i,
4.9295 and 2.8701 which are the six eigenvalues of the matrixA. Note that all the eigenvalues are not real, but
the eigenvalues occur in complex conjugate pairs.

Remark: The above three examples are examples of matrices that have distinct eigenvalues but the eigenvalues are
not necessarily real. This forces us to learn ‘complex arithmetic’. Since sooner or later, we would need to learn
about complex numbers any way — why not today?
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What are complex numbers?

If a and b are two real numbers, then a complex number is a number that looks likea + ib. a is called the
real part and b is called theimaginary partof the complex number. Complex numbers can be added, subtracted,
multiplied and divided, although some of these operations may be a bit awkward. My job is to make you feel
comfortable with these operations.

If a1 + ib1, a2 + ib2 are two complex numbers then we define

(a1 + ib1) + (a2 + ib2) = ((a1 + a2) + i(b1 + b2))

(a1 + ib1)− (a2 + ib2) = ((a1 − a2) + i(b1 − b2))

(a1 + ib1)× (a2 + ib2) = ((a1a2 − b1b2) + i(a1b2 + a2b1))

(a1 + ib1)÷ (a2 + ib2) =
(

a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

)
,provided (a2, b2) 6= (0, 0).

The quadratic power ofa + ib is given as follows:

(a + ib)2 = a2 + i2b2 + i2ab = (a2 − b2) + i(2ab)

where we need to remember thati2 = −1.

How to calculate power of a complex numbers?

What if we want to calculate(a + ib)98? It will be somewhat awkward to multiplya + ib ninety eight times.
One therefore uses what is called the polar coordinates.

Let us definer =
√

a2 + b2. Let us also define an angleθ such that

cosθ =
a

r
, sinθ =

b

r
.

It is easy to see thata + ib = r(cosθ + isinθ). It follows that

(a + ib)n = [r(cosθ + isinθ)]n

One can show that
(cosθ + i sinθ)n = (cos nθ + i sin nθ)

which is also called the DeMoivre’s Theorem. In particular, note that

(cosθ + i sinθ)2 = (cos2θ − sin2θ) + i(2sinθ cosθ) = (cos 2θ + i sin 2θ).

The general formula is easily shown using trigonometry but we shall not do it here. We however have the following
magical formula:

(a + ib)n = [rn(cos nθ + i sin nθ)]

which is how we calculate power of a complex number.

For example(3.6581− 5.8879i)98 is calculated as follows:

r =
√

3.65812 + 5.88792 = 6.9317

cosθ = .527735, sinθ = −.8494164.

It follows that θ = −58.14825 degrees.

cos 98θ = .4776, sin 98θ = .8786.
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We conclude that(3.6581− 5.8879i)98 = 6.931798(.4776 + i .8786).

How to calculate exponential of a complex numbers?

We want to calculate

ea+ib.
Of course, we know that

e(x+y) = ex ey,

wherex andy are scalar real numbers. We extend this property and write

ea+ib = eaeib.

We now defineeib = cos b + i sin b. It follows that

e a+ib = ea cos b + iea sin b.
As an example, if we want to calculatee3.6581−i5.8879, we have

e3.6581−i5.8879 = e3.6581(cos5.8879− isin5.8879) = e3.6581(.9229 + i.3851) = 38.7876(.9229 + i.3851)

and we have
e3.6581−i5.8879 = 35.7971 + 14.9371.

A vector of complex numbers.

Many often, we are interested in looking at a vector of complex numbers. For exampleIC2 is a pair of complex
numbers. Elements ofIC2 are of the form:

u =
(

a + b i
c + d i

)

wherea, b, c and d are real numbers. The magnitude‖u‖ is given by
√

a2 + b2 + c2 + d2. The dot product is
defined as follows. Assume that

v =
(

e + f i
g + h i

)
,

we define
u . v = (a + b i)(e− f i) + (c + d i)(g − h i).

Note thatu . v 6= v . u, ratheru . v = v . u, where ‘overline’ stands for conjugation. Ifz = a + ib, we define the
conjugatez̄ = a− ib.

Two complex vectorsu andv are called perpendicular or orthogonal ifu . v = 0.

It can be easily seen that‖u‖ =
√

u . u.
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We now go back to our story of matrixA.

Example 1 (continued): Recall that the matrixA was given by

A =




2 4 5
3 6 7
−1 4 −3


 .

The Cayley Hamilton Theorem tells us that

A3 − 5A2 − 47A− 6I = 0,

which implies that
A3 = 5A2 + 47A + 6I.

It would follow that
A4 = 72A2 + 241A + 30I.

In general, an arbitrary powerAn of A for n ≥ 3 can be written as a linear combination ofA2, A and I. The
process of writing may actually be quite tedious. Hence we resort to the following trick:

Write
An = α + βA + γA2,

whereα, β andγ are computed by replacingA by the eigenvalues ofA in the above equation. Assume that the
eigenvalues are atλ1 = 9.8389, λ2 = −4.7094 andλ3 = −0.1295. We obtain the following equation:




1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3







α
β
γ


 =




λn
1

λn
2

λn
3


 .

Solving the above equation, we obtain

α = 0.0042λn
1 − 0.0191λn

2 + 1.0149λn
3 ,

β = 0.0334λn
1 − 0.1457λn

2 + 0.1124λn
3 ,

and
γ = 0.0069λn

1 + 0.0150λn
2 − 0.0219λn

3 .

It follows that

An = (0.0042λn
1−0.0191λn

2+1.0149λn
3 )+(0.0334λn

1−0.1457λn
2+0.1124λn

3 )A+(0.0069λn
1+0.0150λn

2−0.0219λn
3 )A2.

We remark that the above calculation illustrates the power of eigenvalues.

Example 2 (continued) In this example the matrixA is given by

A =




5 0 1
8 3 6
0 −6 3


 .

The Cayley Hamilton Theorem tells us that

A3 − 11A2 + 75A− 177I = 0.

It follows that
A3 = 11A2 − 75A + 177I.
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The eigenvalues of the matrixA are at
λ1 = r(cosθ + isinθ),

λ2 = r(cosθ − isinθ)

and at a real valueλ3. Proceeding as before, we write

An = α + βA + γA2,

where the coefficientsα, β andγ are computed by solving the equations



1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3







α
β
γ


 =




λn
1

λn
2

λn
3


 .

In the above matrix we have complex entries. Collecting the real and the imaginary parts, we obtain the following:



1 rcosθ r2cos2θ
0 rsinθ r2sin2θ
1 λ3 λ2

3







α
β
γ


 =




rncos nθ
rnsin nθ

λn
3


 .

The above equation contain only real entries. Thus, even when the eigenvalues are complex conjugates, a real
solution can still be obtained. This procedure is illustrated in this example.

We will soon be talking about eigenvectors of a matrix. However, before we do that, let us make some points.

Point Unus: If A is a symmetric matrix, then all its eigenvalues are real.

A symmetric matrix, by definition, is a matrixA such thatA = AT , i.e. a symmetric matrix is equal to its own
transpose. Let us look at some examples:

Example 4:

Here are the matlab codes:
A=[2 4 5;3 6 7;-1 4 -3]
A=A+A’
poly(A)
roots(poly(A))

We are looking at the symmetric matrixA given by

A =




4 7 4
7 12 11
4 11 −6


 .

The characteristic polynomial of the matrixA is given by

det(λI −A) = λ3 − 10λ2 − 234λ + 54.

The roots of the characteristic polynomial are real and are given by

21.0134, –11.2420, 0.2286.
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Example 5:

We are looking at the symmetric matrixA given by

A =




3 3 0 0 0 0
3 6 0 1 0 0
0 0 6 0 2 0
0 1 0 5 3 0
0 0 2 3 6 1
0 0 0 0 1 9




.

The characteristic polynomial of the matrixA is given by

det(λI −A) = λ6 − 35λ5 + 477λ4 − 3167λ3 + 10415λ2 − 15195λ + 7470.

The roots of the characteristic polynomial are real and are given by

9.9794, 8.5917, 7.8124, 5.6143, 2.0178, 0.9844.
Note that in this example the eigenvalues are all real, as is expected because the matrixA is symmetric. But

also note that additionally all the eigenvalues are positive.

Point Duo:

If A is a symmetric matrix, then it is called positive definiteif all
its eigenvalues are real and positive.

If A is a symmetric matrix, then it is called positive semidefiniteif
all its eigenvalues are real and non negative.

If A is a symmetric matrix, then it is called negative definiteif all
its eigenvalues are real and negative.

If A is a symmetric matrix, then it is called negative semidefiniteif
all its eigenvalues are real and non positive.

In example 5, the matrixA is positive definite, symmetric matrix. In example 4, the matrixA is neither positive
definite nor negative definite. (You may call it an indefinite matrix).
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There is a beautiful theorem about positive definite symmetric matrices that might be worth knowing. It goes like
this:

Let A be anyn × n symmetric matrix. Let us define matricesAj by choosing the firstj rows andj columns

from the matrixA, for j = 1, · · ·n.

Point Tres:

A symmetric matrix A is positive definite if and only if

det(Aj) > 0, j = 1, · · ·n.

Example 4 (continued):

A1 =
(

4
)
.

A2 =
(

4 7
7 12

)
.

A3 =




4 7 4
7 12 11
4 11 −6


 .

Calculating the determinants, we obtaindet(A1) = 4 > 0, det(A2) = −1 < 0. Hence the matrixA is not
positive definite. The point I am making is that we can test positive definiteness without calculating the roots of
the characteristic polynomial (a somewhat difficult step back in those days when root finding programs were not
available on a laptop.

Example 5 (continued):

A1 =
(

3
)
, det(A1) = 3.

A2 =
(

3 3
3 6

)
, det(A2) = 9.

A3 =




3 3 0
3 6 0
0 0 6


 , det(A3) = 54.

A4 =




3 3 0 0
3 6 0 1
0 0 6 0
0 1 0 5


 , det(A4) = 252.

A5 =




3 3 0 0 0
3 6 0 1 0
0 0 6 0 2
0 1 0 5 3
0 0 2 3 6




, det(A5) = 858.
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A6 =




3 3 0 0 0 0
3 6 0 1 0 0
0 0 6 0 2 0
0 1 0 5 3 0
0 0 2 3 6 1
0 0 0 0 1 9




, det(A6) = 7470.

The matrixA is thus positive definite.

To summarize, what we have learnt today are the following:

1) Matrices have eigenvalues and that these eigenvalues are important in calculating pow-
ers of a matrix.

2) Eigenvalues, in general, can be real or complex and therefore we need to deal with
complex numbers.

3) We need to calculate powers of complex numbers. DeMoivre’s theorem comes in handy.
4) All eigenvalues of a symmetric matrix are real.
5) All eigenvalues of a symmetric, positive definite matrix are real and positive.
6) There is a beautiful test for positive definiteness of a symmetric matrix using determi-

nants of minors.

That is a lot for one day, isn’t it.


