My interest in this note is to give some examples of eigenvalues of a matrix:

Example 1: Let us choosed to be the matrix

2 4 5
A= 3 6 7
-1 4 -3

The characteristic polynomial od is obtained by computing
det(N — A) = X3 —5X2 — 47\ — 6

The roots of the above polynomial are @8389, —4.7094 and —0.1295 which are the three eigenvalues of the
matrix A. Note that all three eigenvalues are real.

Example 2: Let us choosed to be the matrix

5 0 1
A= 8 3 6
0 -6 3

The characteristic polynomial of is obtained by computing

det(AN — A) = X3 — 11M\? + 75\ — 177
The roots of the above polynomial are 6581 + 5.88797, 3.6581 — 5.88797 and 3.6838 which are the three
eigenvalues of the matrixl. Note that all the eigenvalues are not real, but the eigenvalues occur in complex
conjugate pairs.
Let us now look at a sufficiently complicated example:

Example 3: Let us choosed to be the matrix

5 0 1 1 0 O
8 8 6 0 1 O
0 6 80 0 1
A= 1 0 05 0 1
0 0 08 3 6
0 -1 0 3 -6 3

The characteristic polynomial of is obtained by computing
det(ZN — A) = X5 — 320° 4+ 482\* — 4078)\3 + 21054\ — 60643\ + 7

The roots of the above polynomial are8&at927 + 6.36314, 8.4927 — 6.3631¢, 3.6075 + 5.56064, 3.6075 — 5.56061,
4.9295 and 2.8701 which are the six eigenvalues of the matdx Note that all the eigenvalues are not real, but
the eigenvalues occur in complex conjugate pairs.

Remark: The above three examples are examples of matrices that have distinct eigenvalues but the eigenvalues are
not necessarily real. This forces us to learn ‘complex arithmetic’. Since sooner or later, we would need to learn
about complex numbers any way — why not today?



What are complex numbers?

If « andb are two real numbers, then a complex number is a number that looks: likeéb. a is called the

real part andb is called theimaginary partof the complex number. Complex numbers can be added, subtracted,
multiplied and divided, although some of these operations may be a bit awkward. My job is to make you feel
comfortable with these operations.

If a1 +iby, as + tby are two complex numbers then we define
(a1 +ib1) + (a2 + ib2) = ((a1 + a2) + i(by + b2))
(a1 + iby) — (ag +ib2) = ((a1 — ag) + i(by — b2))
(a1 +1ib1) X (ag + ib2) = ((a1az2 — b1ba) + i(a1by + agby))

araz +biba  agby —aibs
a3 + b3 a3 + b3

The quadratic power ai + ib is given as follows:

(a1 +1ib1) + (ag + ibo) = ( ) ,provided (ag,bs2) # (0,0).
(a + ib)* = a® + i*b* 4 i2ab = (a® — b?) + i(2ab)

where we need to remember that= —1.
How to calculate power of a complex numbers?

What if we want to calculatéa + ib)°? It will be somewhat awkward to multiply + ib ninety eight times.
One therefore uses what is called the polar coordinates.

Let us definer = Va2 + b2. Let us also define an angtesuch that

cost) = 4 , sinf = —.
r r
It is easy to see that + ib = r(cosf + isind). It follows that
(a+1ib)" = [r(cost + isinf)]"

One can show that
(cost + i sinB)"™ = (cos nf + i sin nb)

which is also called the DeMoivre’s Theorem. In particular, note that
(cosb + i sind)? = (cos®0 — sin20) + i(2sind cosh) = (cos 20 + i sin 26).

The general formula is easily shown using trigonometry but we shall not do it here. We however have the following
magical formula:
(a+1ib)" = [r"(cos nf + i sin nb)]

which is how we calculate power of a complex number.

For example(3.6581 — 5.8879i)% is calculated as follows:

r = /3.65812 + 5.88792 = 6.9317

cost = 527735, sinf = —.8494164.
It follows that§ = —58.14825 degrees.

cos 9860 = 4776, sin 980 = .8786.



We conclude that3.6581 — 5.8879i)% = 6.9317%%(.4776 + i .8786).
How to calculate exponential of a complex numbers?

We want to calculate

Of course, we know that

wherex andy are scalar real numbers. We extend this property and write

a+1b _ L0 b

€ (AN

We now definee®® = cos b + i sin b. It follows that

et — o0 oo b 4 je® sin b.

As an example, if we want to calculaté6581—5-8379 e have
3-0981=i5.8879 _ 3.6581 (155 8879 — i5in5.8879) = €39581(.9229 + 1.3851) = 38.7876(.9229 + i.3851)

and we have ‘
36981158879 _ 35 7971 4+ 14.9371.

A vector of complex numbers.

Many often, we are interested in looking at a vector of complex numbers. For ex@fjsea pair of complex
numbers. Elements @f are of the form:
y - a+bi
N\ ec+di

wherea, b, ¢ and d are real numbers. The magnitugle|| is given by+/a2 + b2 + c2 + d2. The dot product is
defined as follows. Assume that

_ e+ fi

~ \g+hi )’

u.v = (a+bi)le—fi)+(c+di)(g—hi).

Note thatu . v # v . u, ratheru . v = v . u, where ‘overline’ stands for conjugation. #f= a + ib, we define the
conjugatez = a — ib.

we define

Two complex vectors: andv are called perpendicular or orthogonalif v = 0.

It can be easily seen thiu|| = /u . u.



We now go back to our story of matrix.

Example 1(continued): Recall that the matriA was given by

2 4 5
A= 3 6 7
-1 4 -3

The Cayley Hamilton Theorem tells us that
A® —5A% —4TA - 61 =0,

which implies that
A® =5A% + 4TA +61.

It would follow that
A* = 72A% + 241 A + 301.

In general, an arbitrary powet™ of A for n > 3 can be written as a linear combination d4f, A and I. The

process of writing may actually be quite tedious. Hence we resort to the following trick:

Write
A" = a + BA + A2,

whereqa, § and~ are computed by replacing by the eigenvalues ofl in the above equation. Assume that the

eigenvalues are at; = 9.8389, Ao = —4.7094 and A3 = —0.1295. We obtain the following equation:

1 A A2 a AT
1 Ay A B =1
1 A3 A2 v A2

Solving the above equation, we obtain
o = 0.0042\7 — 0.0191\5 4 1.0149)7,
B = 0.0334\] — 0.1457\% + 0.1124\3,

and
v = 0.0069\] + 0.0150A5 — 0.0219)5.

It follows that

A™ = (0.0042X7—0.0191 A5 +1.0149A7)+(0.0334\7—0.1457AZ +0.1124A7) A+(0.0069X7+0.0150AF —0.0219A7) A2.

We remark that the above calculation illustrates the power of eigenvalues.

Example 2(continued) In this example the matrix is given by

5 0 1
A= 8 3 6
0 -6 3

The Cayley Hamilton Theorem tells us that
A3 —11A% + 75A — 1771 = 0.

It follows that
A3 = 1142 —75A + 1771.



The eigenvalues of the matrig are at
A1 = r(cosh + isind),

Ao = 1(cost — isinf)
and at a real valuas. Proceeding as before, we write
A" = o+ A+ A2,

where the coefficients, g and~ are computed by solving the equations

TP YR e A7
1 A A3 B l=1 2 |.
1 A3 A2 v AR

In the above matrix we have complex entries. Collecting the real and the imaginary parts, we obtain the following:

1 rcosf r2cos26 « r"cos nb
0 rsinf 12sin20 B | =| r"sinnd |.
1 A3 )\g v AR

The above equation contain only real entries. Thus, even when the eigenvalues are complex conjugates, a rea
solution can still be obtained. This procedure is illustrated in this example.

We will soon be talking about eigenvectors of a matrix. However, before we do that, let us make some points.

Point Unus: If A is a symmetric matrix, then all its eigenvalues are real.

A symmetric matrix, by definition, is a matri4 such thatd = A7, i.e. a symmetric matrix is equal to its own
transpose. Let us look at some examples:

Example 4:

Here are the matlab codes:
A=[245;36 7;-14 -3]
A=A+A

poly(A)
roots(poly(A))

We are looking at the symmetric matrix given by

4 7 4
A=\ 7 12 11 |.
4 11 -6

The characteristic polynomial of the matrik is given by
det(\] — A) = X3 — 10\? — 234\ + 54.

The roots of the characteristic polynomial are real and are given by

21.0134, -11.2420, 0.2286.



Example 5:

We are looking at the symmetric matrix given by

33 0000
36 01 00
0 06 0220
A= 0105 320
00 2 361
000019

The characteristic polynomial of the matrik is given by
det(M — A) = X% — 350° + 4772\ — 31673 4 1041512 — 15195\ + 7470.

The roots of the characteristic polynomial are real and are given by

9.9794, 8.5917, 7.8124, 5.6143, 2.0178, 0.9844.

Note that in this example the eigenvalues are all real, as is expected because thedmatsymmetric. But
also note that additionally all the eigenvalues are positive.

Point Duo:

If A is a symmetric matrix, then it is called positive definiteif all
its eigenvalues are real and positive.

If A is a symmetric matrix, then it is called positive semidefiniteaf
all its eigenvalues are real and non negative.

If A is a symmetric matrix, then it is called negative definitaf all
its eigenvalues are real and negative.

If A is a symmetric matrix, then it is called negative semidefinité
all its eigenvalues are real and non positive.

In example 5, the matrixl is positive definite, symmetric matrix. In example 4, the mattixs neither positive
definite nor negative definite. (You may call it an indefinite matrix).



There is a beautiful theorem about positive definite symmetric matrices that might be worth knowing. It goes like
this:

Let A be anyn x n symmetric matrix. Let us define matrice; by choosing the firsj rows and; columns

from the matrixA, forj=1,---n
Point Tres:

A symmetric matrix A is positive definite if and only if
det(Aj) >0, 7=1,

Example 4 (continued):

=(4).
407
712 )
47 4
Ag=| 7 12 11 |.
411 —6

Calculating the determinants, we obtaiat(A;) = 4 > 0, det(A2) = —1 < 0. Hence the matrix4 is not
positive definite. The point | am making is that we can test positive definiteness without calculating the roots of
the characteristic polynomial (a somewhat difficult step back in those days when root finding programs were not
available on a laptop.

Example 5(continued):

A= (3), det(4;) =3
Ay = (g 2 ) det(Ay) = 9
3 3 0
Az = 3 6 0 , det(A3) = 54
0 0 6
33 00
Ay = g g (6) (1) , det(A4) = 252
01 0 5
33 000
3 6 010
As=] 0 0 6 0 2 |, det(As) = 858.
01 0 5 3
0 0 2 3 6



330000
360100
006020

A= 0105 30 | detlds) =T470.
002361
0000719

The matrix A is thus positive definite.

To summarize, what we have learnt today are the following:

1) Matrices have eigenvalues and that these eigenvalues are important in calculating pow-
ers of a matrix.

2) Eigenvalues, in general, can be real or complex and therefore we need to deal with
complex numbers.

3) We need to calculate powers of complex numbers. DeMoivre’s theorem comes in handy.

4) All eigenvalues of a symmetric matrix are real.

5) All eigenvalues of a symmetric, positive definite matrix are real and positive.

6) There is a beautiful test for positive definiteness of a symmetric matrix using determi-
nants of minors.

That is a lot for one day, isn't it.



